Irradiation of arbitrary time-dependence: mathematical model of adaptive response and oscillatory behavior, and its consequences

Yehoshua Socol, Yair Shaki and Ludwik Dobrzyński

Kielce, September 18, 2019
Acknowledgements

• Prof. Ludwik Dobrzyński National Centre for Nuclear Research Świerk, Poland
• Dr. Yair Y. Shaki
• Prof. Avi Caspi }
 Jerusalem College of Technology
• Dr. Jerry Cuttler Independent, Canada
• Prof. Ludwig Feinendegen Heinrich-Heine University, Düsseldorf
• Prof. Kanokporn Rithidech Stony Brook Medical School
• Dr. Bobby R. Scott Lovelace Respiratory Research Institute
• Prof. James Welsh Loyola U. Chicago, Stritch School of Medicine
• Mr. Yaakov Socol Hebrew University Medical School, Jerusalem
In memoriam

Boris Dubrovin, mathematician 1950–2019
Moscow University
International School for Advanced Studies (SISSA) Italy
Cause of death: ALS
What we know

• High-dose radiation kills
• Low-dose: multiple adaptive response mechanisms
• Acute adverse health effects are fast (hours)
• Adaptive response (protection)
 • may switch on within hours or days
 • may last weeks and months
Adaptive response

Adapted from:
Feinendegen et al. (2007)
Exp. Hematol. 35, 37-46
Hypothesis:

![Graph showing the relationship between time and organism's strength after irradiation.](Image)
Hypothesis: critical damping

\[\ddot{u}(\tau) + 2\dot{u}(\tau) + u(\tau) = 0 \]

\[u(\tau) = u_0 \exp(-\tau) + v_0 \tau \exp(-\tau) \]
Data: rats, 400 R

Numbers of early normoblasts (●) and pronormoblasts (○), and their standard errors, in the marrow.

Hulse (1963) Brit. J. Haemat. 9, 365-375
Numbers of early normoblasts (●) and pronormoblasts (○), and their standard errors, in the marrow.

Hulse (1963) *Brit. J. Haemat.* 9, 365-375
Data: mice survival after pre-irradiation

Priming dose: 45 cGy
Challenging dose: 675 cGy
LD50: 845 cGy (C57BL/6)

Nunamaker et al., Comp Med 2013

Hypothesis:

Organism’s strength U

Relative time $\tau = t / T_0$

IRRADIATION

25 cGy

$T_0 \approx 2 \text{ weeks}$

Minimal permissible level

Irreversible damage occurs
Assumption #2: second pulse

The same change in
- strength
- its initial slope

Relative time $\tau = \frac{t}{T_0}$
Pulse train

Organism's strength \mathcal{U}

Relative time $\tau = t / T_0$

$\Delta \tau$

u_0

$r = \frac{|u_0|}{\Delta \tau}$ average dose rate

\mathcal{U}

mass

damper

spring

\mathcal{L}

Low-dose PTBR symposium, Kielce
Effect of dose fractionation
hypothesized doses and times

25 cGy
every 15 days

$r = \frac{|u_0|}{\Delta \tau}$
average
dose rate

5 cGy
every 3 days

Dose rate $r = 1.0$, $n = 1$ pulse(s)/T_0

Dose rate $r = 1.0$, $n = 5$ pulse(s)/T_0
Effect of dose fractionation

The same limit \(\tau \rightarrow \infty \)

\(u_\infty = r \)?
Continuous irradiation limit

Continuous irradiation:
\[
\begin{align*}
 u(\tau) &= -r - u(\tau) + v(\tau) \\
 v(\tau) &= \beta \times r - v(\tau)
\end{align*}
\]

Three parameters:
- Time scale T_0
- Damage threshold
- Response β
Smirnova OA, Yonezawa M

RADIOPROTECTION EFFECT OF LOW LEVEL PREIRRADIATION ON MAMMALS: MODELING AND EXPERIMENTAL INVESTIGATIONS

Health Phys. 85(2):150–158; 2003

13 differential equations about 50 parameters
Effect of dose rate
hypothesized doses and times

\[u_\infty = r \]

- For \(r = 1.0 \):
 - 5 cGy every 3 days
- For \(r = 6.0 \):
 - 30 cGy every 3 days
Adaptive response and radiation therapy (RT)

- RT side effects are important
- Dose fractionation is commonly used to mitigate the side effects; however, no kind of training has been reported
- By whole-body irradiation we hope to increase radiation resistance of the body, but NOT of the tumor
How to achieve high value of u without crossing the "red line" of irreversible damage?

Organism's strength U

Relative time $\tau = \frac{t}{T_0}$

Minimal permissible level

Irreversible damage
– to increase radiation rate r while $u = -1$!
u_{max} vs. irradiation duration τ_{rad}
Radiation training

Assumptions:
- $T_0 = 2$ weeks
- $u = -1$: 25 cGy
Problems with the model

- No limit for maximal achievable effect
- Too high value of tolerance dose rate

\[r \approx 5 \]
\[5 \times 25 = 125 \text{ cGy} \]
\[125 / 14 \approx 9 \text{ cGy/day} \]
Tolerance dose-rate: dogs’ mortality

Dose rate [cGy / day]

0.75 cGy / day: statistically significant life shortening

LD50:
Dog 250 cGy
Man 400 cGy

9 cGy/day – too high

Fritz (2002)
Brit J Radiol suppl
Nonlinear response

- Monod equation: microbial growth
- Michaelis–Menten equation: enzyme kinetics

\[v = \frac{d[P]}{dt} = \frac{V_{\text{max}}[S]}{K_M + [S]} \]
Hypothesis:

![Graph showing cumulative radiation dose vs. adaptive response.](image)

- Adaptive Response
- Cumulative Radiation Dose
- D_M
- V_{max}
- $\frac{1}{2}V_{max}$
Approximation:

![Graph showing cumulative radiation dose and adaptive response.](image)
Analytical result

\[
\begin{align*}
\dot{u}(\tau) &= -r(\tau) - u(\tau) + v(\tau) \\
\dot{v}(\tau) &= \begin{cases}
\beta \times r(\tau) - v(\tau), & \tau \leq D_M \\
-r(\tau) - v(\tau), & \tau > D_M
\end{cases}
\end{align*}
\]

$D_M = 600 \text{ cGy}$

$r = 25 \text{ cGy/week}$

Organism’s strength u

Relative time $\tau = t / T_0$

24 weeks
Pro and contra

• Pro
 • analytical tool, one parameter added (D_M)
 • logical result for radiation training efficiency limit
 • no change for results with total dose below D_M

• Contra
 • crude biological model
 • crude math approximation
 • no explanation for tolerance dose rate
Future directions

• Introduce smooth Monod-like response
• Add parameter to connect tolerance dose (acute) with tolerance dose rate

• Tune the model based on future data
 Experimentalists, please!!!
Conclusions

• Rather simple math model for adaptive response developed
• Practical ideas for “radiation training” in radiation therapy
• Experimental data are urgently needed!

Thank you!